電気公式集 静電気・電磁気・照明サンプル

No.	出題 頻度	項目	文字 記号	公式	単位記号	公式記号説明 (関連公式No.)
1	0	静電エネルギー	W	$\frac{1}{2} C V^2 = \frac{1}{2} \cdot \frac{Q^2}{C}$	J	C:静電容量[F] V:電圧[V] Q:電荷[C]
2	0	運動エネルギー e = 1.602×10 ⁻¹⁹ [C]	e V (エレクトロン お*ルト)	$\frac{1}{2} \text{m } v^2 = \frac{1}{2} \text{ J } \omega^2$	J	(電動力応用No. 15, 16)
3	0	-電荷間に働く力	F	$\frac{Q_1Q_2}{4\;\pi\;\epsilon\;\mathrm{r}^{\;2}}$	N	ϵ :物質の誘電率 $[F/m]$ $\epsilon = \epsilon_0 \epsilon_S$ ϵ_0 : 裏空中の誘電率 $[F/m]$ ϵ_0 =8.855×10 ⁻¹² $[F/m]$ ϵ_S :物質の比誘電率
4	0			$9 \times 1 0 {}^{9} {}^{{ m Q}_{ 1} { m Q}_{ 2}} {}^{{ m z}_{ { m S} { m r}^{ 2}}}$		
5	0	電界中の電子が受 ける力		QE		E:電界の強さ[V/m
6		静電力	F	- d W d ℓ	N/m	
7		カの向き		同辞号で反発力 異符号で吸引力 $Q:=+10 \text{ICI} \qquad Q=+1$ $F = \sqrt{F_1^2 + F_2^2} [\text{N}$		F
8	0	電位	V	<u>Q</u> 4 π ε r	٧	r : 半径[m]
9		電界の強さ(点電 荷の場合)		Q 4πεr ²		
10		電界の強さ(円筒 帯電体の場合)	Е	<u>φ (l)</u> 2 πε r (l)	V/m	ℓ:円筒体の長さ[m] 分母と分子で相殺される
11	0	電界の強さ(平行 板電極間の場合)		$\frac{D}{\epsilon} = \frac{Q}{\epsilon S} = \frac{V}{\ell}$		
12	0	電荷密度(電東)	D	$\epsilon E = \frac{Q}{S}$	C/m ²	S:面積[m²]

電気公式集 静電気・電磁気・照明サンプル

	出題 頻度	項目	文字 記号	公式	単位記号	公式記号説明 (関連公式No.)
1	0	電磁エネルギー	W	1 L I ²	J	L:自己インダクタンス[H] I:電流[A]
2		単位体積当りの 電磁エネルギー	W	$\frac{1}{2}$ μ H 2	J /m ²	
3	0	*MALE* 00) = AGL 2 1.		$\frac{\text{m}_{1}\text{m}_{2}}{4\pi\mu\text{r}^{-2}}$		m:磁極[Wb] μ:物質中の透磁率 μ=μ ₀ μ _S
4		磁極間に働く力	F	6.33×10 $^4\frac{\text{m}_1\text{m}_2}{\mu_\text{S}\text{r}^2}$	N	μ_0 : 真空中の透磁率 μ_0 = 4 $\pi \times 10^{-7}$ [H/m] μ_S : 物質の比透磁率
5	0	電磁力 (フレミングの左手の 法則は電動機で使 用)		NΒΙΙsinθ		N:巻数[回] l:直線導体長[m] θ:電流と磁束の角度
6	0	電流力 (平行導	E.	$\frac{\begin{array}{ccccccccccccccccccccccccccccccccccc$	N/m	F'=Fcos θ F'=F
7	0	体間で使用)	F	2 I ₁ I ₂ × 1 0 ⁻⁷	N/m	A H
8		回転力 (棒)	- T	Hm l sin θ	N·m	
9	0	回転力 (平面)		ΝΒΙ Αcos θ		A:断面積[m ²] 長方形コイル=縦×横 円形コイル=π r ²
10		磁界中の電子が行 う等速円運動の半 径	r	$ \frac{\text{m } v}{\text{B e}} $ e = 1.602×10 ⁻¹⁹ [C]	m	
11		起磁力	F	$\phi \mathrel{R}_m = N \mathrel{I} = H \mathrel{\ell}$	А	R _m :磁気抵抗[H ⁻¹]
12		磁界の強さ		<u>m</u> 4 π μ r ²		
13	0	円形コイルの中心 磁界の強さ	Н	N I 2 r	A/m	
14	0	無限長電線の円周 磁界の強さ (アン ペアの周回積分)		$\frac{\text{N I}}{\text{$\ell$ (= 2 π r)}}$		
15	0	磁束密度	В	$\mu H = \frac{\mu N I}{\ell (= 2 \pi r)}$	T	

電気公式集 静電気・電磁気・照明サンプル

No.	出題 頻度	項目	文字 記号	公式	単位記号	公式記号説明 (関連公式No.)
1	. ©	光度	Ι	E×r²	c d	r :距離[m]
2	©	光束	F	$I \times \omega$	l m	ω:立体角[sr]
3	⊚	照度	Е	F÷S	Ιx	S:面積[m²]
4	0	 × r² ω: 立体角[8] 光源の種類により異なる 	光 単 X 度 位数 III III III III III III III III III	× τ (透過光束)	海軍 単半当 光 東 単 半 当	度: B[nt] 立立体角で 立見かけ上面積 りの光束数 × π ※発散度: M[tx] 位面積当りの 光束数 の面積[m²] 1 小数)

電気公式集 静電気・電磁気・照明サンプル

No.	出題 頻度	項目	文字 記号	公式	単位記号	公式記号説明 (関連公式No.)
5		点光源	I	$I_h \sin \theta + I_v \cos \theta$	c d	I h
6		水平面照度	E	E _n cos θ	Ιx	h En θ
7			E h	$\frac{I}{\ell^2}\cos\theta$		
8		法線照度	E n	I 1 2 2	Ιx	点光源の光度 I [cd]
9	0	点光源から円形 テーブルを見た 立体角	ω	2 π (1 -cos θ)	sr	θ
10	0	テーブルの平均 照度	Е	$\frac{2 \operatorname{I} (1 - \cos \theta)}{\operatorname{r}^2}$	Ιx	r [m]
11	0	照明設計		NFU=SED		N:光源の個数,F:光源1個の光束[1s] U:照明率(小数),S:被限面面積[m²] E:被照面照度[1x],D:被光補債率 なお、保守率は被光補債率の逆数
12		道路照明における 被照面面積(街路灯 が片側配列の場合) 道路照面面積(街路灯 被照面側又は千鳥配 列の場合)	S	d L		d:道路幅[m]、 L:街路灯間の距離[m]
13			直路照明における 皮照面面積(街路灯 『両側又は千鳥配	<u>d L</u> 2		